Environ Sci Pollut Res (2015) 22:17082-17094
DOI 10.1007/s11356-015-4784-0

@ CrossMark

RESEARCH ARTICLE

Solar light (2v) and H,O,/hv photo-disinfection of natural alkaline
water (pH 8.6) in a compound parabolic collector at different day

periods in Sahelian region

J. Ndounla'? . C. Pulgarin'

Received: 31 January 2015 / Accepted: 26 May 2015 /Published online: 1 July 2015

© Springer-Verlag Berlin Heidelberg 2015

Abstract The photo-disinfection of natural alkaline surface
water (pH 8.6+0.3) for drinking purposes was carried out
under solar radiation treatments. The enteric bacteria studied
were the wild total coliforms/Escherichia coli (10* CFU/ml)
and Salmonella spp. (10* CFU/ml) naturally present in the
water. The photo-disinfection of a 25-1 water sample was car-
ried out in a solar compound parabolic collector (CPC) in the
absence and in the presence of hydrogen peroxide (H,0,).
The addition of H,O, (10 mg/L) to the sample water was
sufficient to enhance the photo-disinfection and ensure an ir-
reversible lethal action on the wild enteric bacteria contents of
the sample. The inactivation kinetic of the system was signif-
icantly enhanced compared to the one carried out without
H,0, addition. The effect of the solar radiation parameters
on the efficiency of the photo-disinfection were assessed.
The pH has increased during the treatment in all the photo-
disinfection processes (v and HyO,/hv). The Salmonella spp
strain has shown the best effective inactivate time in alkaline
water than the one recorded under acidic or near-neutral con-
ditions. The evolution of some physico-chemical parameters
of the water (turbidity, NO, , NO;~, NH,*, HPO,*", and
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bicarbonate (HCO5 )) was monitored during the treatment.
Finally, the possible mechanistic process involved during the
enteric bacteria inactivation was suggested.

Keywords Solar photo-disinfection - H,O, - Alkaline water -
Enteric bacteria - Inactivation - Compound parabolic collector

Introduction

Pathogenic enteric bacteria are related to the outbreak of several
water-borne diseases (e.g., diarrhea, cholera, dysenteries, and
typhoid) in developing countries. This microbial contamination
of water sources by farming, breeding, reduces the amount of
potable drinking water and increases waterborne diseases out-
break. The use of solar radiation to disinfect drinking water has
been successfully evaluated by several authors under the solar
disinfection (SODIS) process (Sommer et al. 1997; Sobsey
2002; Boyle et al. 2008; Marques et al. 2013). Burkina Faso,
like many other developing countries in Sub-Saharan Africa, is
situated in the latitude lines of 30° N and 30° S and receives
about 2,000 to 3,000 h of solar illumination annually. This
energy could be productively used to improve the solar disin-
fection of drinking water. SODIS implies the synergistic effect
of sunlight and temperature (Wegelin et al. 1994). Clinical field
trials on the evaluation of the efficiency of SODIS towards the
reduction of occurrences of diarrhea have been conducted in
Kenya (Conroy et al. 2001; Du Preez et al. 2011), India (Rose
et al. 20006), Iran (Mahvi 2007), and Cambodia (McGuigan
etal. 2011). The development of an enhanced solar disinfection
process in the Sahelian region could be useful to efficiently
solve the problem of potable drinking water scarcity.

The enhancement of the SODIS efficiency has been report-
ed by several authors, with the aim to develop a low-cost
process capable of producing a larger volume in less time than
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the 1-2 L in 6 h proposed by SODIS references (Reed 2004;
Rincon and Pulgarin 2006; Ubomba-Jaswa et al. 2010; Marques
et al. 2013). SODIS enhancement with hydrogen peroxide addi-
tion in water (10 mg/L of H,O,) or by photo-Fenton (/v/H,O,/
Fe?") process has been considered by some authors (10 mg/L of
H,0, and 0.6 mg/L of added iron (Spuhler et al. 2010)) to be an
affordable and efficient process which could be used to speed up
the SODIS process and to increase the volume of water produced
(Sciacca et al. 2010; Spuhler et al. 2010; Rodriguez-Chueca et al.
2012). H,O, can directly attack the cellular membrane, initiating
lipid peroxidation chains that increase membrane permeability
and affect the viability of the cells (Halliwell and Chirico 1993;
Spuhler et al. 2010). Fenton and related systems encompass
reactions of peroxides (usually H,O,) with metal ions leading
to the formation of reactive oxygen species (ROS) and reactive
radical species (Eq. 1). These metal ions are mostly transition
metals which could be found naturally or due to industrial activ-
ities in natural waters such as manganese, zinc, chromium, cop-
per, iron, etc. In most of the research carried recently on Fenton
and photo-Fenton, the metal ion involved in the reaction is iron
(Safarzadeh-Amiri et al. 1996; Cho et al. 2004; Bandala et al.
2012; Rodriguez-Chueca et al. 2013). Therefore, the catalytic
Fenton reaction in the dark, generally active at acidic pH, is
known to favor the generation of the hydroxyl radicals (‘OH)
and Fe*" ions. OH" radical is highly oxidant and has a lethal
action on the enteric bacteria.

Fe’™ + H,0,—Fe’" + OH + OH (1)

Surface water contains a large amount of natural organic
matter (NOM). This NOM can form photo-active Fe*" com-
plexes even at neutral and basic pH. In the presence of soluble
Fe*"-organo-complex, the solar light enables the formation of
Fe?" required for the catalytic cycle and an oxidized organo-
complex. NOM is also able to interact as a photosensitizer,
leading to the production of ROS ("OH, HO,", 0,)
(Canonica et al. 1995). The photo-Fenton process was firstly
more efficiently been used under acidic conditions (pH 2.5-3)
for biorecalcitrant chemical compound degradation (Herrera
et al. 1998; Sarria et al. 2005; Kenfack et al. 2009; Malato
et al. 2009). After the first records of the efficiency of photo-
Fenton disinfection at near-neutral pH (Rincon and Pulgarin
2006), several authors have conducted investigations to evalu-
ate it in natural water and some at neutral pH (Moncayo-Lasso
et al. 2009; Sciacca et al. 2010; Ndounla et al. 2013). The
photochemical reduction of nitrite or nitrate and the chemical
oxidation of ammonia could lead to OH" radical generation
(Egs. 2-3) (Kotzias et al. 1987; Fanning 2000; Brito et al.
2010). The decomposition of ammonia can occur through di-
rect oxidation with the hydroxyl radical so that forming various
compounds of nitrogen among them, the nitrogen gas, nitrogen
Oxides (NOy) and ionic compounds such as nitrite and nitrate
(Huang et al. 2008). Therefore, the redox activities of the

nitrogen compounds in the water during photo-disinfection
could significantly affect the rate of the photo-inactivation.

NO;™ + H,O + hv—NO, + OH™ + OH (2)
NO,” + H,O + iv—NO + OH™ + OH’ (3)

Inorganic ions can have an interfering effect on the Fenton
reagent. Depending on their concentrations, Fenton and
photo-Fenton oxidations of organic compounds are inhibited
in varying degrees by inorganic ions (e.g., phosphate, sulfate,
chloride) (Pignatello et al. 2006). Phosphate has a doubly
detrimental effect by precipitating iron and by scavenging
hydroxyl radicals (Malato et al. 2009).

Domestic, agricultural, and industrial activities favor the
introduction in the water cycle of some inorganic ions such
as bicarbonate (HCO; ), carbonate (CO327), S0, S*, F,
HPO,*,NO, ,NO;,and NH,". These ions can either lead to
the precipitation of iron scavenging of ‘OH or coordinate to
dissolve Fe** and Fe*" in more or less unreactive complexes
(Pignatello et al. 2006). These reactions, when they occur, can
affect the photo-inactivation process.

The current study is the first conducted on alkaline surface
water with adding H,O, at field scale in a compound parabolic
collector (CPC) solar reactor. Its aim is to evaluate the effi-
ciency of the H,O,-enhanced photo-disinfection (possible
photo-Fenton) treatment in theoretically unfavorable alkaline
conditions. The pH evolution during photo-disinfection and
the effect of the solar radiation parameters (day period of
illumination, irradiance and dose) on the efficiency of the
photo-disinfection is assessed. The impact of some inorganic
ions present in the natural water sample on the efficiency of
the photo-disinfection process is also evaluated.

Materials and methods
Physico-chemical measurements and chemical reagents

The HACH DR/2000 spectrophotometer methodologies used in
this study to characterize some physico-chemical components of
the water sample (turbidity, iron, nitrite, nitrate, phosphate, sul-
fate, fluoride, sulfide, and ammoniac) follow the guidelines of
the Standard Methods for Examination of Water (HACH 2001).
The HACH methods used for the determination of each compo-
nent and its detection limit are presented in Table 1. However,
the bicarbonate and carbonate ion concentrations were deter-
mined by titration. A universal meter WTW 340i equipped with
a WTW SenTix 41-3 probe was used to measure the pH and
temperature. The H,O, concentration was followed during the
experiments by a Peroxide Merckoquant (Merk) test with a
detection limit of around 0.5 mg/L. Microbiology
Chromocult® (Merck KGaA) was used for bacterial plating.
Growth media were poured into a pre-sterilized Petri dish,
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Table 1  Summary of the HACH analytical methods used to characterize some components of the water sample (HACH 2001)
Components HACH DR/2000 methods/programs Detection ranges
Turbidity Program 750 (wavelength 450 nm) 0450 NTU (nephelometric turbidity units)
Total iron FerroVer Method, program 265 (Powder Pillows, wavelength 510 nm) 0-3.00 mg/L

Nitrate High range (HR), program 355 or the cadmium reduction method (wavelength 500 nm) 0-30.0 mg/L NO5 -N
Nitrite Low range (LR), program 371 or diazotization method (wavelength 507 nm) 0-0.300 mg/L NO, -N
Ammonia Nessler method, program 380 (wavelength 425 nm) 0-2.50 mg/L NH3-N
Phosphate PhosVer 3 (ascorbic acid) method, program 490 (Powder Pillows, wavelength 890 nm) ~ 0-2.50 mg/L PO4>~
Sulfate SulfaVer 4 method, program 690 (Powder Pillows, wavelength 450 nm) 0-70 mg/L SO4>~
Fluoride SPADNS method, program 190 (wavelength 580 nm) 0-2.00 mg/L F~
Sulfide Methylene blue method, program 690 (wavelength 665 nm) 0-0.600 mg/L S,

92x16 mm (Sarstedt AG). Hydrogen peroxide, 30 % (AnalaR
Normapur, VWR), was used to prepare the Fenton reagent, and
hydrochloric acid fuming (HCI), 37 % (Fluka Analytical,
Sigma-Aldrich®), was used for glass reactor cleaning.

Characteristics of the water sample

The water used during the experiments was collected from April
to May 2011 (dry season) at dam 3 in Ouagadougou, Burkina
Faso. Ouagadougou is located at 12° 21’ 26" latitude north and
1° 32" 7" longitude west and receives approximately 2,500 h of
solar radiation per year. The experiments were conducted under
direct solar exposure at the International Institute for Water and
Environmental Engineering (2iE), Ouagadougou. The water
sample is locally used by part of the local population for house-
hold purposes (cooking, drinking, and washing) and has a pH
8.6+0.3. Its physico-chemical parameter concentrations are pre-
sented in Table 2. The enteric bacteria concentration in the water
were approximately 10* CFU/mL for each entity involved in

Table 2 Physico-chemical characteristics of the water sample
measured before and after the photo-Fenton disinfection treatment

Parameters Before the treatment After the treatment
Temperature (°C) 28-29.5+0.5 -

pH 8.6+0.3 -

Turbidity (NTU) 8+3 8+3

Total Iron (mg/L) 0.10+0.05 0.11+0.06
Nitrite (NO, ") (mg/L) 0.011+0.003 0.012+0.002
Nitrate (NO3 ") (mg/L) 3.26+0.2 4.02+0.3
Ammonia (NH,") (mg/L) 0.11+0.05 0.17+0.04
Sulfate (SO, (mg/L) 12+1 12+1

Sulfide (S*7) (mg/L) 0.007+0.002 0.008+0.001
Fluoride (F ) (mg/L) 0.50+0.02 0.50+0.03
Phosphate (PO,>") (mg/L) 0.07+0.01 0.15+0.02
Bicarbonate (HCO; ) (mg/L) 148.10+0.05 137.86+0.04
Carbonate (CO5>) (mg/L)  3.8+0.1 37402

@ Springer

this study (total coliforms/Escherichia coli and Salmonella
spp.). The sampling collection was performed 1 h before the
experiment in plastic jerricans (20 L).

Bacterial strain and growth media

The wild bacterial strain monitored in this study was the fecal
indicator bacteria coliforms/E. coli and Salmonella spp.
Microbiology Chromocult® (Merck KGaA) was used for bac-
terial plating. Chromocult is a selective and differential growth
media. It selectively inhibits growth of the non-enteric bacteria.
As experiments were conducted with natural water, consider-
ing their initial enteric bacteria concentration, no dilution was
realized during the bacterial plating. Sample water (100 pL)
was inoculated into the growth medium. Considering the se-
lectivity of Chromocult, the detection limit of enteric bacteria
was zero colony growths observed in the plate. The differential
nature of the medium permits the distinction of Salmonella
spp. (colorless), E. coli (purple and pink), and the blue- and
salmon-colored colonies of other coliform bacteria. However,
in order to emphasize the decrease of the total coliforms, all the
E. coli observed and other coliforms counted are presented
together in this study as total coliforms/E. coli.

The experiments in the compound parabolic collector

All the experiments (solar radiation and photo-Fenton) were
conducted under direct sunlight in a CPC (Ndounla et al.
2014). The CPC is a SOLARDETOX ACADUS-2003 batch
photoreactor device model delivered by Ecosystem SA
(Barcelona, Spain). Twenty-five liters of surface water was
disinfected during each treatment at constant flow (2 L/min).
Preliminary experiments were performed to evaluate the effi-
cient exposure duration (4 and 2 h, respectively) which could
be proposed to the population concerned if the implementa-
tion of the photo-treatment is taken into account. Afterwards,
the photo-disinfection was carried out in the CPC during six
different time intervals: (i) 8 am to 12 pm (8—12 h), (ii) 10 am
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to 12 pm (1012 h), (iii) 12 pmto 2 pm (12-14 h), (iv) 1 pmto
3 pm (13-15h), (v) 2 pm to 4 pm (14-16 h), and (vi) 3 pm to
5 pm (15—17 h) for both processes (direct solar radiation and
solar light enhanced with H,O,). The evaluation of the influ-
ence of direct solar radiation parameters (irradiance and cu-
mulated dose) on the efficiency of both photo-disinfection
processes is reported. The solar UV radiation was then report-
ed during the experiments by a UV-A radiometer ACADUS
85 UV fixed on the CPC photoreactor. Solar irradiance inten-
sity per square meter (W.m ) was then monitored between
300 and 400 nm. During the exposure, pre-sterilized glass
flasks of 100 mL were used at regular time intervals (0, 10,
20, 30, 45, 60, 90, 120, 150, 180, and 240 min) to collect the
treated water samples to be analyzed. One hundred microliters
was taken with a micropipette from the flask and poured into a
Petri dish plate containing growth media (Chromocult agar).
Plates were incubated for 18-24 h at 37 °C and the colonies
counted with a colony counter (Stuart SC6 Colony Counter).
To check the durability of photo-disinfection after exposure,
all the flasks were further kept in the dark for post-irradiation
controls after 24 h. Dark control tests were conducted simul-
taneously in the dark on 100 mL of samples containing 10 mg/
L of H,O,. The concentration of some physico-chemical pa-
rameters of the water (HCO3 ", CO327, SO427, ST, F, HPO42
=, NO,, NO;~, NH,", turbidity, and the total iron content)
was evaluated before and after the treatment. The pH and
temperature evolution during the treatments were successively
recorded. Each experiment was repeated three times to ensure
reproducibility. The Wolfram Mathematica 8.0 and MS Excel
programs were used for data analysis and graph fitting.

Results and discussion

Evolution of some physico-chemical characteristics
of the water sample

The surface water used in this study was collected from
Ouagadougou’s dam 3 during the dry season. Table 2 presents
its main physico-chemical characteristics before and after photo-
treatment. Water composition has a great influence on the photo-
disinfection treatment, and light penetration is minimal in highly
turbid water (Joyce et al. 1996; Kehoe et al. 2001). To realize an
efficient photo-disinfection, it is recommended to conduct it in
water with less than 30 NTU turbidity (Byrne et al. 2011). The
water treated in this study was clear with only 8+3 NTU. The
initial water temperature ranged between 28 and 29.5+0.5 °C,
and its pH was 8.6+0.3. The impact of the alkalinity of the
natural water treated in this study on the efficiency of the
photo-disinfection process enables us to produce the record of
the first data in such conditions. The Sahelian African soils are
ferruginous, which leads permanently to natural iron contents in
the water. Considering the presence of this iron and other metal

ions such as copper in the sample water, after the addition of
H,0, (10 mg/L), it was possible to the photo-Fenton reaction to
take place in the system during the exposure to solar radiation.

The concentration of mineral nitrogen compounds (nitrate,
nitrite, ammonia) in the surface water used in this study was far
below the World Health Organization (WHO) norms for drink-
ing water which is 3 mg/L for nitrite and 50 mg/L for nitrate. No
guideline is given for ammonia (WHO 2011). The variations of
the concentration of these nitrogen compounds during the photo-
treatment were not relevant as their increased has remained far
below the WHO restriction. The concentration of sulfate, sulfide,
fluoride, and phosphate was under the restriction of the WHO
guidelines for drinking water (WHO 2011). Photo-disinfection
did not significantly affect their variation during the treatments
(Table 2). Rincon and Pulgarin (2007) have reported that the
mixture of these components (sulphate, sulfide, fluoride and
phosphate) at high concentrations can positively influence the
kinetic of the photo-disinfection, while when individually taken
into account, they have a negative impact on the photocatalytic
process (Pignatello et al. 2006; Rincon and Pulgarin 2007).

The HCO5 concentration was extremely high in the sur-
face water treated in this study, and the presence of CO5>~ ions
was also recorded (Table 2). It should be taken in account that
the carbonates are generated from bicarbonates in water, when
its pH is greater or equal to 8.3. As a buffer complex, HCO; /
CO5%", the bicarbonate and carbonate ions could greatly in-
fluence the photocatalytic process (Pignatello et al. 2006;
Rincon and Pulgarin 2007) by their quenching effect on the
hydroxyl radicals in a H,O,/light system (Kochany and
Lipczynskakochany 1992). Relevant differences were not no-
ticed in their concentration before and after photo-disinfec-
tion. Due to their buffering effect, they have also a great im-
pact on the pH variation during photo-disinfection.

Enteric bacteria inactivation in alkaline water by solar
light (hv), H,O,/hv system, and dark control (H,O,/0bs)

The inactivation of wild enteric bacteria contents of the natural
surface water in the CPC during the photo-disinfection treat-
ment by solar radiation (4v), H,O,/hv, and dark control (H,O,/
obs) is presented in this paper. The evaluation of the iron con-
tent of the natural water before the exposure has led to the
determination of an initial concentration of 0.10+0.05 mg/L.
The H,0, addition in the sample water for the system H,O,/Av
before the exposure to solar radiation was 10 mg/L. The open
symbols represent the total coliforms/E. coli and the full sym-
bols are for Salmonella spp. The traces (/\ ) and (A ) represent
Fenton evaluation conducted in 100-mL glass flasks kept in the
dark. The traces (()) and (@) illustrate the enteric bacteria
decreased under solar radiation, and ((]) and (Jll) present the
inactivation under photo-Fenton treatment. The decrease of
both enteric bacteria under both photo-disinfection methods
follows the first-order kinetic (McGuigan et al. 1998).
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Solar radiation system

The generation of the ROS from NOM, which intervene togeth-
er with the direct action of photons in the lethal attack of the
bacteria, is highly influenced by the light intensity or irradiance
(W m?) (Reed 2004; Ndounla et al. 2014). However, the solar
inactivation of wild enteric bacteria of natural surface water at
different daytime intervals is not only influenced by average
irradiance (AVI) but also by the temperature increase recorded
during each exposure period in Figs. 1, 2, and 3, trace (()) and
(®). It is noticeable that the synergy between the temperature
rise and the AVI and not the cumulated dose significantly af-
fected the photo-disinfection process. Indeed, during the expo-
sure period, 15-17 h, in the presence of very low AVI of
8 W m 2 for a cumulated dose of 21 Wh m ~ and a temperature
of less than 40 °C (Fig. 3f'), none of the enteric bacteria in the
water were inactivated under direct solar radiation (Fig. 3f).
During the periods 8-12 h (Fig. 1a) and 1416 h (Fig. 3e), the
temperature increased to approximately 45 °C, and the AVI were
17 and 20 W m 2, respectively. These conditions have led to the
total inactivation of both enteric bacteria. One hundred fifty mi-
nutes (period 8—12 h) and 90 min (period 14—16 h) were required
for total coliform/E. coli strain inactivation. Two hundred forty
minutes (period 8-12 h) and 120 min (period 14-16) were re-
corded for Salmonella spp. strain inactivation. The high dose
required during the period 8-12 h for Salmonella spp. total in-
activation (180 Wh m ) proved that the availability of high
doses does not lead to high inactivation kinetics. Only
80 Wh m 2 was required during the exposure period 14-16 h
for both enteric bacteria’s total inactivation. The dose recorded
for the successive exposure periods 10-12 h (Fig. 2b), 12-14 h
(Fig. 2¢), and 1315 h (Fig. 2d) was, respectively, 90, 50, and
50 Wh m™? for both enteric bacteria’s inactivation in

approximately 90 min in all the cases. This result again confirms
the previously recorded observations about the irrelevant impact
of the dose in the photo-disinfection of drinking water sources.

The AVI recorded during the successive daytime periods 10—
12, 12-14, and 13—15 h was, respectively, 29, 27, and 28 W m >
These high AVI have approximately the same order of magni-
tude as the ones recorded in the Sub-Sahelian region during the
dry season (Kenfack et al. 2009). Associated to the temperature
rise of more than 40 °C during the first hour of exposure, in
almost all the cases, they have led to the total inactivation of both
enteric bacteria strains in approximately 90 min. Therefore, high
AVI induced a similar required time (and dose) for total inacti-
vation. The total coliform/E. coli strain was the only one to be
inactivated in 60 min during the exposure period 13—15 h. The
temperature increase at the beginning of the exposure has cer-
tainly significantly impacted the high inactivation kinetic of the
total coliform/E. coli strain observed. However with only one
bacterial strain inactivated, the treated water remain unsafe for
drinking purposes and should go under improved photo-disin-
fection or exposure under high solar radiation to be safe.

It is generally accepted that the photonic flux greatly affects
the ROS production and the concomitant oxidative stress in the
bacteria, leading to inactivation or death, while the increased
temperature inactivates the enzymes which were supposed to
protect them from this stress (Cabiscol et al. 2000). As neither
the temperature increase nor the ROS generation through the
photonic action of irradiance was sufficiently available during
the exposure period 15-17 h, the steady state of the active
enteric bacteria recorded in the water at the end of the exposure
could be attributed to the absence of lethal oxidative stress.
These results highlight the fact that it is the synergetic effect
of the photonic and the thermal parameters of the solar radia-
tion (intense solar radiation coupled to increased temperature

Ilumination (/iv)

Dark storage (obs)

CFU /mL

102+

101

107

(a')

45

Temperature[°C)

30

=& Solar light (hv)

w=e—=H,0,hv

0

0 30 60 90 120 180 240
Time[min]

Fig. 1 (a) Inactivation of wild enteric bacteria in natural surface water
carried out from 8 to 12 h under direct solar illumination (4v). Post-
irradiation events (24-h dark storage). pH 8.6+0.3, natural iron content
(Fe): 0.10£0.05 mg/L, addition of H,O, (10 mg/L) in the water for the
enhanced photo-disinfection process. Total coliforms/E. coli ((]) and
Salmonella spp. (ll]) under enhanced photo-disinfection (H,O,/Av), total
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Fig.2 (b—d) Inactivation of wild enteric bacteria in natural surface water
carried out from 10-12, 12-14, and 13-15 h, respectively, under direct
solar illumination (/v). Post-irradiation events (dark storage during 24 h).
pH 8.6+0.3, natural iron (Fe) content: 0.10+0.05 mg/L, addition of H,O,
(10 mg/L) in the water for the enhanced photo-disinfection process. Total
coliforms/E. coli ((]) and Salmonella spp. (Jl]) under enhanced photo-
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Evolution of the water temperature [7, °C] during both treatments (/v
and H,O/hv). Inset: solar irradiance [W m > (==)] and cumulated total
dose [Wh m ™2 (---)] available during the experiment
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Fig. 3 (e, f) Inactivation of wild enteric bacteria in natural surface water
carried out from 14-16 and 15-17 h, respectively, under direct solar
illumination (Av). Post-irradiation events (dark storage during 24 h). pH
8.6+0.3, natural iron (Fe) content: 0.10+£0.05 mg/L, addition of H,O,
(10 mg/L) in the water for the enhanced photo-disinfection process. Total
coliforms/E. coli ((]) and Salmonella spp. (l]) under enhanced photo-

to approximately 45 °C), which lead to the enteric bacteria
inactivation during the solar disinfection (Wegelin et al.
1994; Sommer et al. 1997; McGuigan et al. 1998).
Unfortunately, during the post-irradiation storage in the dark,
the Salmonella spp. strains recovered their viability and grew
to more than their initial level in all the treated water. This
regrowth of Salmonella spp. is the negative side of the bare
solar disinfection. It revealed that their inactivation was not
irreversible. It will be necessary to evaluate whether the en-
hanced solar disinfection with H,O, addition (H,O,/Av) could
ensure the irreversibility of all the enteric bacteria inactivation.

Enhanced photo-disinfection system (H,O»/hv)

Fast inactivation kinetics were recorded in all the enhanced by
H,0, addition systems (H,O,/Av) (Figs. 1, 2, and 3; trace (])

@ Springer

disinfection (H,O,/hv), total coliforms/E. coli (()), and Salmonella spp.
(®) under direct solar radiation (4v), total coliforms/E. coli (/\) and
Salmonella spp. (4 ) in the dark control system (H,O,/0bs). (e, f')
Evolution of the water temperature [7, °C] during both treatments (kv
and H,Oy/hv). Inset: solar irradiance [W m > (==)] and cumulated total
dose [Wh m 2 (---)] available during the experiment

and (). Comparatively to the situation observed under direct
solar radiation (only /v) in the previous section, it could be
assumed that the generation of highly oxidant hydroxyl radical
‘OH and other ROS has occurred in the system during the
exposure. This ROS ("OH, HO,", O,") generation from
photosensitized NOM (Canonica et al. 1995) and Fe** regen-
eration from photo-active Fe3+—organo—complex (Pignatello
et al. 2006) has certainly contributed to enhancement of the
inactivation kinetics observed here at alkaline pH. Considering
the natural iron content of the sample water and the photo-
Fenton generation of "OH in the medium could be part of the
mechanistic pathway involved during the photo-treatment.
Knowing that H,O, is relatively stable (unlike "OH) and un-
charged (unlike O27), it can penetrate the cell membranes and
diffuse into cells (Jang and Imlay 2010; Spuhler et al. 2010).
After crossing over the cell cytoplasm and penetrated inside
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the cell, the H,O, can react with the intracellular free or loosely
bound iron through intracellular Fenton reaction and generate
‘OH. It can also oxidize the iron sulfur clusters ([4Fe-4S]) and
the release Fe’", which if reduced to Fe*", can contribute to
intracellular Fenton reactions (Jang and Imlay 2008; Spuhler
et al. 2010). However, it can be assumed that the oxido-
reduction of the nitrogen components of the sample water dur-
ing the irradiation has generated also additional "OH as de-
scribed by Fanning (2000) and Brito et al. (2010) which may
greatly enhanced the inactivation kinetic of the process.

The high photon-flux generated by the AVI available during
the exposure periods 10-12, 12—14, and 13—15 h, which was,
respectively, 29, 27, and 28 W m 2, associated to the tempera-
ture rise of more than 40 °C during the first hours of exposure
led to a drastic inactivation of both enteric bacteria in approxi-
mately 45 min in all cases (Fig. 2, trace (]) and (lll)). However,
during the exposure period 10-12 h, the Salmonella spp. total
inactivation took a little more time. The effect of the low solar
radiation available in the morning and afternoon was highlighted
by the recorded irradiance: 17 and 20 W m™2, respectively, for
the exposure periods 8-12 and 14-16 h (Figs. 1, 2, and 3). A
relevant inactivation kinetics was, however, recorded in both
cases. The total inactivation was achieved for both enteric bac-
teria after 120 min during the exposure period 812 h. The fast
inactivation in 20 min of total coliforms/E. coli strain was re-
corded for the exposure period 14-16 h, while that of
Salmonella spp. was achieved after 60 min.

The inactivation of the weakened strains of total coliforms/
E. coli was noticed at the end of the enhanced photo-
disinfection (H,O,/hv) process, during the exposure period
15-17 h, in contrast to the negative results recorded for the
same period under bare solar radiation (Fig. 3, trace ((]) and
(). Even though the AVI was very low during this period
(8 W m ), no regrowth was recorded after the dark post-
irradiation storage (24 h). As noticed in the previous section,
the cumulated dose of the solar radiation did not significantly
influence the inactivation process. The dose recorded for the
total inactivation of both enteric bacteria during the exposures
was approximately 50 Wh m 2 for the periods 12-14, 13-15,
and 14-16 h. It was 120 and 60 Wh m 2, respectively, for the
exposure periods 8-12 and 1012 h. It is important to notice
the residual effect of the H,O, in the dark control system
(H,0,/0bs) during the storage. However, the remaining H,O,
amount (3—4 mg/L) in the treated water disappears completely
from the water after 2 or 3 days of storage. This H,O, depletion
was also reported in our previous paper (Ndounla et al. 2013).

Dark control system (H,0»/0bs)

As can be observed in all the traces (/\) and (A )) in Figs. 1,
2, and 3, neither the total coliform/E. coli strain nor that of
Salmonella spp. decreased of one magnitude order was no-
ticed during the exposure to the Fenton system. However, it is

surprising to notice that the Fenton process (Egs. 1-2) led to
the total inactivation of the weakened total coliform/E. coli
strain during the subsequent 24-h dark storage. In contrast,
the more resistant strain of Salmonella spp. (Berney et al.
2006) attained a higher active bacteria population than that
present at the beginning of the treatment during the same dark
storage time.

Post-irradiation events
Post-irradiation events afier solar radiation disinfection

The Salmonella spp. conversion from nonculturable to
culturable strains was noticed in all the waters which were
disinfected for 2 h under direct solar radiation. After the re-
covery of their culturability during the dark storage, they in-
creased to more than their initial contents. These Sa/monella
spp. strains’ recovery during favorable conditions leads to the
assumption that the effect of solar radiation was bacteriostatic
and not bactericidal (Rincon and Pulgarin 2007). A longer
exposure time is therefore needed to ensure the bactericidal
effect of the bare solar radiation on Salmonella spp. strains to
ensure its irreversible inactivation. The total coliform/E. coli
strain was not inactivated during the exposure period 15-17 h.
However, after being weakened by illumination, it was totally
inactivated during the subsequent 24 h of dark storage. In
contrast, the remaining Salmonella spp. strains took advantage
of the favorable conditions of the dark storage to recover their
capacity for growth. Such capacity is part of the resistance of
Salmonella spp. to photo-inactivation (Berney et al. 2006).

Post-irradiation events after enhanced with H,0,
photo-disinfection

None of the total coliform/E. coli and Salmonella spp. strains
inactivated under the enhanced photo-treatment (H,O,/Av)
have recovered viability during storage (Figs. 1, 2, and 3, trace
() and (M))- No regrowth of any of the strains was observed
after the 24 h of dark storage. Considering this irreversible
inactivation, it can be assumed that this point of use drinking
water treatment process could be efficiently used to produce
larger volumes of water in shorter time than required by
SODIS bottle system.

pH evolution during the experiments

The pH increases, recorded in all the photo-disinfection (hv
and H,O,/hv) processes as presented in Fig. 4, are in contrast
with the decrease report by several authors during the photo-
catalytic treatment with TiO, (Rincon and Pulgarin 2007;
Malato et al. 2009). This increase is probably due to (i) the
high concentration of the HCO; /CO5> recorded in the natu-
ral water treated in this study (Table 2) could significantly
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Fig. 4 Evolution of pH during the photo-disinfection treatments: (¢)
under solar radiation treatment without H,O, addition (4v), (M) under
enhanced photo-treatment (H,O,/Av) with H,O, (10 mg/L)

induce the buffer action of the complex HCO; /CO;>~ which
maintains the solution in the alkaline region; (ii) the degrada-
tion of the nitrogen component of the water during their
photo-degradation, leading to the generation of the OH and
consequently increased alkalinity (Kotzias et al. 1987;
Fanning 2000). However, this pH increase has not negatively
affected the inactivation kinetic of the system.

Comparative evaluation of the enteric bacteria
inactivation by enhanced photo-disinfection processes
at alkaline or near-neutral pH in natural waters

Table 3 presents the initial concentration of some relevant
physico-chemical parameters and the microorganisms of
the well water used in this study. The presence of several
iron species in natural water: soluble (Fe** or **) and
solids (e.g., iron oxides) have lead to heterogeneous con-
ditions for photo-Fenton process. This heterogeneous
conditions could take advantage of several pathways: (i)

Table 3 Some

characteristics of the well ~ Parameters Contents

water sample used —

during the experiments Turbidity 5+3 NTU
pH 540.1
Temperature 29+0.1 °C

Dissolve total iron 0.07+£0.02 mg/L
0.23+0.01 mg/L
10* CFU/mL

10° CFU/mL

Solids total iron
Wild E. coli
Wild Salmonella spp.

NTU nephelometric turbidity units, CFU/
mL colony-forming unit per milliliter, °C
degree Celsius, mg/L milligram per liter

@ Springer

the high adsorption of iron oxides by bacteria (Spuhler
et al. 2010), (ii) the effect of the bacteria siderophores
which increases iron dissolution (Stintzi et al. 2000) and
leads to high photo-Fenton activity, (iii) the enhancing
semi-conductor effect of some types of solid iron oxides
on photo-disinfection (Moncayo-Lasso et al. 2008;
Mazille et al. 2010), or (iv) the NOM or humic substance
complexation with iron to maintain their solubility in so-
lution (Pignatello et al. 2006; Lipczynska-Kochany and
Kochany 2008). Ayodele et al. (2012) have efficiently
optimized the degradation kinetic of phenolic
coumpounds with heterogeneous photo-Fenton process
at alkaline pH. This efficiency of the photo-Fenton pro-
cess at alkaline pH for phenol degradation, bring out the
opportunities to involve more research on its efficiency in
the disinfection of bacteria in natural alkaline water
sources in contrast to the preceding studies who were
mostly carried in acid medium (Huang et al. 2008).
Cabiscol et al. (2000) reported that the oxidative stress
is highly lethal for enteric bacteria, therefore in presence
of "OH radical the optimization of the bacterial inactiva-
tion is significantly enhanced leading to the observed
results recorded in this study. The "OH radical occurrence
in the water treated in this study has probably follows
this two pathways: either through the oxido-reduction of
the nitrogen components of the water in the medium or
the homogenous (Fe-org) and heterogeneous (Fe oxides)
photo-Fenton in alkaline or near-neutral water sources.
Figure 5 shows the inactivation curves of the total coli-
forms/E. coli and Salmonella spp. by photo-Fenton in
well water (W, pH 5.4+0.1) or in surface water (S, pH
8.6+0.3). The solar radiation parameters (irradiance/dose)
and temperature rise during the experiments were similar
to those presented in the previous section at the same
time intervals for both water sources. In contrast to the
fact regularly observed at acidic or near-neutral pH,
Salmonella spp. strains seem to be less resistant to
photo-disinfection at alkaline pH. Their total inactivation
occurred under several exposure periods in this study at
the same time as that of total coliforms/E. coli (Fig. 5a—
c). The delay (15 min) noticed between the inactivation
kinetics of Salmonella spp and that of total coliforms/
E. coli during the exposure period 10—12 h is not worth
recording as a relevant fact. However, the Salmonella spp
strain has shown in general best effective inactivate time
in alkaline water than the one recorded under acidic or
near-neutral conditions. Knowing that alkaline pH levels
(>8) can render free residual chlorination less effective,
leading to a significant decrease in bacterial disinfection
by chlorination (Marois-Fiset et al. 2013), the opportunity
to efficiently disinfect natural alkaline water by photo-
disinfection could be a positive alternative for household
water disinfection in such cases.
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Fig.5 Wild enteric bacteria inactivation by enhanced photo-disinfection/
photo-Fenton (natural Fe****/H,0,/hv) in natural wells (W) and surface
(S) water under direct solar radiation at different time intervals of the day
(8-12, 10-12, and 12-14 h). ([]) total coliforms/E. coli, (M) Salmonella
spp. Some parameters of the sample water are presented here: the surface

Inactivation mechanisms

Inactivation mechanisms under solar radiation treatments

(hv)

Dissolved oxygen in the water seems to have a direct impact
on the bactericidal action of solar disinfection (Reed 1997).
The water recirculation in the CPC during the photo-
disinfection process is subjected to high fluctuation fol-
lowing the oxygen availability at different point of the
reactor. The NOM present in natural water acts as

water contains 0.10+0.05 mg/L natural iron (Fe) and pH 8.6+0.3, while
the well water contains natural iron (dissolved, 0.07+£0.02 mg/L of Fe?"
3" and solid iron oxides (0.23£0.01 mg/L), pH 5.4+0.01. H,0, (10 mg/
L) was added in each sample to initiate the enhanced process

photosensitizers. Under irradiation, the photosensitizers
become electronically excited and react with O,, leading
to ROS such as singlet oxygen ('0O,), superoxide
(HO,'/'0,7), H,0,, and OH" radicals (Canonica et al.
1995; Reed 1997). The catalases and other enzymes
which should protect the cells from oxidative stress are
photo- and thermosensitive. The temperature increase of
up to 45 °C during photo-disinfection inactivates these
enzymes, leaving the cells susceptible to internal ROS
attack and subsequent inactivation. OH" radicals are the
more bactericidal ROS (Jang and Imlay 2010; Spuhler

@ Springer



17092

Environ Sci Pollut Res (2015) 22:17082—17094

et al. 2010). A delay in the photo-disinfection kinetic is
observed when several environmentally unfavorable fac-
tors are present (Rincon and Pulgarin 2007), such as the
low temperature and solar radiation available during the
exposure period 15-17 h. This unfavorable condition has
significantly influenced the reactivation of the
Salmonella spp. Strain after the photo-treatment.

Inactivation mechanisms under enhanced photo-treatments
(H>05/hv)

Natural organic matter contains functional groups which can
form complexes with Fe** or Fe*". These complexes not only
increase the solubility of iron over the natural pH range but
can also considerably contribute to the photo-Fenton reactions
via a LMCT under solar radiation. The positive effect of NOM
constituents (e.g., carboxylic acids) on photo-Fenton process,
which allow us to work at near-neutral pH and, as noticed
here, at alkaline pH (pH 8.6+0.3) too, has recently been re-
ported by several authors (Georgi et al. 2007; Lipczynska-
Kochany and Kochany 2008; Vermilyea and Voelker 2009).
The Fe*" generation from the Fe’'-organo-complex in the
enhanced photo-disinfection treatments carried out in this
study reacts with the H,O, added to the water and leads to
the generation of lethal "OH radical (Pulgarin et al. 1995;
Pignatello et al. 2006; Malato et al. 2009). The association
of the ROS production with the reaction between the
photosensitized NOM and dissolved O, supplied by the water
recirculation in the CPC and the high generation of *OH by
photo-action (photo-Fenton) and nitrogen components oxido-
reduction in the water cause high oxidative stress in the enteric
bacteria. In a normal situation, the cells can escape oxidative
stress by producing catalase enzymes to inactivate them
(Cabiscol et al. 2000). It is known that the enzymes are
photo- and thermosensitive and are inactivated with increased
temperatures (Ghadermarzi and Moosavi-Movahedi 1996;
McGuigan et al. 1998). The simultaneous temperature in-
crease and photonic action during the ROS production have
inactivated the enzyme production. In the absence of the pro-
tective enzymes, the self-defense mechanisms of the cells are
inhibited, thus favoring the H,O, penetration into the cell
through membrane peroxidation and the intracellular produc-
tion of the OHe and other ROS ('0,, HO,', ‘0, ", H,0,) lead-
ing to irreversible cell inactivation. The post-irradiation events
show no enteric bacteria recovery, thus confirming their irre-
versible inactivation.

Conclusions
The photo-disinfection treatment was efficiently enhanced by

H,0, addition at alkaline pH. Solar irradiation is the key fac-
tor for both photo-disinfection processes (hv and H,O,/hv).

@ Springer

The enhanced photo-disinfection via the enhancement of in-
ternal and external photo-Fenton at alkaline pH is efficient if
conducted under irradiances superior to 12 W m 2 and a tem-
perature higher than 40 °C. None of the enteric bacteria strains
(total coliform/E. coli and Salmonella spp.), totally inactivated
under enhanced photo-disinfection treatment, have succeeded
in recovering the culturability during the subsequent 24 h of
dark storage. The resistivity of the Salmonella spp. strains
noticed at near-neutral pH in our previous study was not con-
firmed at alkaline pH. These strains were highly sensitive at
alkaline pH, and their total inactivation was recorded at the
same time as those of the total coliforms/E. coli. The enhanced
photo-disinfection treatment ensures the irreversible inactiva-
tion of the enteric bacteria, while under bare solar radiation
exposure of 4 or 2 h, the inactivated Salmonella spp. strains
have recovered their viability during the 24 h of subsequent
dark storage. To efficiently disinfect the water under uniquely
solar radiation, it is important to expose it for more than 4 h
under intense solar irradiance and impose a temperature in-
crease of up to 45 °C to ensure the simultaneous irreversible
inactivation of total coliform/E. coli and Salmonella spp.
Considering the enhancement ability of the HO,/Av system
and its irreversible lethal action on enteric bacteria, we recom-
mend additional research into improvements to ensure the
safety of the treated water before it implementation at point
of use level.
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